Identification of Prophages in Bacterial Genomes by Dinucleotide Relative Abundance Difference
نویسندگان
چکیده
BACKGROUND Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. METHODOLOGY Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. CONCLUSIONS The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences.
منابع مشابه
PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies
Prophages are phages in lysogeny that are integrated into, and replicated as part of, the host bacterial genome. These mobile elements can have tremendous impact on their bacterial hosts' genomes and phenotypes, which may lead to strain emergence and diversification, increased virulence or antibiotic resistance. However, finding prophages in microbial genomes remains a problem with no definitiv...
متن کاملCompositional biases of bacterial genomes and evolutionary implications.
We compare and contrast genome-wide compositional biases and distributions of short oligonucleotides across 15 diverse prokaryotes that have substantial genomic sequence collections. These include seven complete genomes (Escherichia coli, Haemophilus influenzae, Mycoplasma genitalium, Mycoplasma pneumoniae, Synechocystis sp. strain PCC6803, Methanococcus jannaschii, and Pyrobaculum aerophilum)....
متن کاملUse of the genomic signature in bacterial classification and identification.
In this study we investigated the correlation between dinucleotide relative abundance values (the genomic signature) obtained from bacterial whole-genome sequences and two parameters widely used for bacterial classification, 16S rDNA sequence similarity and DNA-DNA hybridisation values. Twenty-eight completely sequenced bacterial genomes were included in the study. The correlation between the g...
متن کاملPhage_Finder: Automated identification and classification of prophage regions in complete bacterial genome sequences
Phage_Finder, a heuristic computer program, was created to identify prophage regions in completed bacterial genomes. Using a test dataset of 42 bacterial genomes whose prophages have been manually identified, Phage_Finder found 91% of the regions, resulting in 7% false positive and 9% false negative prophages. A search of 302 complete bacterial genomes predicted 403 putative prophage regions, a...
متن کاملDetecting Horizontally Transferred and Essential Genes Based on Dinucleotide Relative Abundance
Various methods have been developed to detect horizontal gene transfer in bacteria, based on anomalous nucleotide composition, assuming that compositional features undergo amelioration in the host genome. Evolutionary theory predicts the inevitability of false positives when essential sequences are strongly conserved. Foreign genes could become more detectable on the basis of their higher order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007